16x^2+64x-132=0

Simple and best practice solution for 16x^2+64x-132=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16x^2+64x-132=0 equation:



16x^2+64x-132=0
a = 16; b = 64; c = -132;
Δ = b2-4ac
Δ = 642-4·16·(-132)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12544}=112$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-112}{2*16}=\frac{-176}{32} =-5+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+112}{2*16}=\frac{48}{32} =1+1/2 $

See similar equations:

| b=(2;8,0.25) | | 3(2/3c+4)=-5(c-4) | | 3(3/2c+4)=-5(c-4) | | X+14=2(x+3) | | X+14=2x+3 | | (5.85/1.85)=x | | -(3-7x)=2-4(1-x) | | 9=u/3 | | 17=n/8 | | 6=2x+2/2x+3 | | 4x/3+10=x+20/3 | | w*18=18 | | -3(4z-4)=4-(z-1) | | 5^x=25^x+3 | | m-14=-23 | | 9374-m= | | -3=1-2r+6 | | 4v-3-2v=-11 | | -3(7u-7)+7u=4(u+6) | | 1.66+3n=0.8n+12 | | 2a-6a=-8 | | 3(w-5)-9=-4(-6w+2)-3w | | 8y+4+22=180 | | -8=1-5b+6 | | (-2/3x)=12 | | -4+2n+3=9 | | -8=4x-8 | | -(11/5)x=-132/3 | | (4/5)x=3x-(132/3) | | 1/2+9=2x/2-1 | | 6-4x+2+5x=-3+x | | 10a-2=-132 |

Equations solver categories